Why have there been so many eruptions since the age of the dinosaurs? Geoscientists at the University of Sydney can now provide a clear reason why Australia’s volcanoes have peppered the east coast, from North Queensland to Tasmania.
The remnants of hundreds of Australia’s volcanoes have littered the east coast — the most recent just a few thousand years old — and scientists have been at a loss to explain why so many eruptions have occurred over the past 80 million years. Now, geoscientists at the University of Sydney have discovered why part of a stable continent like Australia is such a hotbed of volcanic activity.
And the findings suggest there could be more activity in the future for Australia’s volcanoes. Dr. Ben Mather, from the School of Geosciences and the EarthByte group at the University of Sydney, said:
“We aren’t on the famous Pacific ‘Ring of Fire’ that produces so many volcanoes and earthquakes. So, we needed another explanation why there have been so many volcanoes on Australia’s east coast.”
Australia’s volcanoes
Many of Australia’s volcanoes are one-off events, he said, adding:
“Rather than huge explosions like Krakatoa or Vesuvius, or iconic volcanoes like Mount Fuji, the effect is more like the bubbles emerging as you heat your pancake mix.”
Their remnants of Australia’s volcanoes can look like regular hills or notable structures like Cradle Mountain in Tasmania, the Organ Pipes in Victoria, the Undara Lava Tubes in Queensland, and Sawn Rocks, near Narrabri, in NSW. Many are yet to be identified, Dr. Mather said. So what is happening? Mather explained:
“Under our east coast we find a special volatile mix of molten rock that bubbles up to the surface through the younger, thinner east coast Australian crust.”
The study has been published in the journal Science Advances. Dr. Mather and his team looked at how hundreds of eruptions have occurred along the east coast, from North Queensland to Tasmania and across the Tasman to the largely submerged continent Zealandia.
They were particularly interested in “recent” peaks of volcanic activity 20 million and 2 million years ago. Co-author Dr. Maria Seton, from the School of Geosciences and EarthByte group, said:
“Most of these eruptions are not caused by Australia’s tectonic plate moving over hot plumes in the mantle under the Earth’s crust. Instead, there is a fairly consistent pattern of activity, with a few notable peaks.”
What tipped them off was that these peaks were happening at the same time there was an increased volume of sea-floor material being pushed under the continent from the east by the Pacific plate. Mather said:
“The peaks of volcanic activity correlate nicely with the amount of seafloor being recycled at the Tonga-Kermadec trench east of New Zealand.”
Taking this evidence, Dr. Mather and his team have built a new model that unifies the observations of so many eruptions occurring over millions of years of Australia’s volcanoes along the east coast. Mather said:
While the model explains the consistent volcanic activity of Australia’s volcanoes, it can’t predict when the next volcano will emerge.
How it happens
The seafloor of the Pacific Plate to the east is being pushed under the Australian Plate. This process is called subduction. The material is literally being pushed under the Australian continental shelf, starting at the Tonga-Kermadec Trench east and north of New Zealand. Mather said:
“From there it is being slammed into the transition zone between the crust and the magma at depths of about 400 to 500 kilometres. This material is then re-emerging as a series of volcanic eruptions along Australia’s east coast, which is thinner and younger than the centre and west of the continent.”
This subduction process is not unique to the Australian east coast. Mather explained:
“What sets the east Australia-Zealandia region apart is that the sea-floor being pushed under the continent from the western Pacific is highly concentrated with hydrous materials and carbon-rich rocks. This creates a transition zone right under the east coast of Australia that is enriched with volatile materials.”
The new explanation improves on previous models that have suggested Australia’s volcanoes in Victoria were due to convection eddies in the mantle from being near the trailing edge of the tectonic plate or models that relied on the plate passing over hot spots in the mantle. Mather said:
“Neither of these gave us the full picture. But our new approach can explain the volcanic pattern up and down the Australian east coast.”
Dr. Mather said this model could also explain other intraplate volcanic regions in the Western U.S., Eastern China, and around Bermuda. Co-author Professor Dietmar Müller, the Joint Coordinator of the EarthByte group in the School of Geosciences, said:
“We now need to apply this research to other corners of the Earth to help us understand how other examples of enigmatic volcanism have occurred.”
Provided by: University of Sydney [Note: Materials may be edited for content and length.]
Follow us on Twitter, Facebook, or Pinterest