Internet censorship by authoritarian governments prohibits free and open access to information for millions of people around the world. Attempts to evade such Internet censorship have turned into a continually escalating race to keep up with ever-changing, increasingly sophisticated strategies.
Censoring regimes have had the advantage in that race because researchers must manually search for ways to circumvent Internet censorship, a process that takes considerable time. New work led by University of Maryland computer scientists could shift the balance of the censorship race. The researchers developed a tool called Geneva (short for Genetic Evasion), which automatically learns how to circumvent censorship.
Tested in China, India, and Kazakhstan, Geneva found dozens of ways to circumvent Internet censorship by exploiting gaps in censors’ logic and finding bugs that the researchers say would have been virtually impossible for humans to find manually. Dave Levin, an assistant professor of computer science at UMD and senior author of the paper, said:
“With Geneva, we are, for the first time, at a major advantage in the censorship arms race.
“Geneva represents the first step toward a whole new arms race in which artificial intelligence systems of censors and evaders compete with one another. Ultimately, winning this race means bringing free speech and open communication to millions of users around the world who currently don’t have them.”
All information on the Internet is broken into data packets by the sender’s computer and reassembled by the receiving computer. One prevalent form of Internet censorship used by authoritarian regimes works by monitoring the data packets sent during an Internet search. The censor blocks request that either contain flagged keywords (such as “Tiananmen Square” in China) or prohibited domain names (such as “Wikipedia” in many countries).
When Geneva is running on a computer that is sending out web requests through a censor, Geneva modifies how data is broken up and sent, so that the censor does not recognize forbidden content or is unable to censor the connection.
Known as a genetic algorithm, Geneva is a biologically inspired type of artificial intelligence that Levin and his team developed to work in the background as a user browses the web from a standard Internet browser. Like biological systems, Geneva forms sets of instructions from genetic building blocks.
But rather than using DNA as building blocks, Geneva uses small pieces of code. Individually, the bits of code do very little, but when composed into instructions, they can perform sophisticated evasion strategies for breaking up, arranging, or sending data packets.
Geneva keeps the instructions that work best at evading Internet censorship and kicks out the rest
Geneva evolves its genetic code through successive attempts (or generations). With each generation, Geneva keeps the instructions that work best at evading Internet censorship and kicks out the rest. Geneva mutates and crossbreeds its strategies by randomly removing instructions, adding new instructions, or combining successful instructions and testing the strategy again.
Through this evolutionary process, Geneva is able to identify multiple evasion strategies very quickly. Levin, who holds a joint appointment in the University of Maryland Institute for Advanced Computer Studies, said:
“This completely inverts how researchers typically approach the problem of censorship.
“Ordinarily we identify how a censorship strategy works and then devise strategies to evade it. But now we let Geneva figure out how to evade the censor, and then we learn what censorship strategies are being used by seeing how Geneva defeated them.”
The team tested Geneva in the laboratory against mock censors and in the real world against real censors. In the lab, the researchers developed censors that functioned like those known from previous research to be deployed by autocratic regimes. Within days, Geneva identified virtually all the packet manipulation strategies that had been discovered by previously published work.
To demonstrate that Geneva worked in the real world against undiscovered Internet censorship strategies, the team ran Geneva on a computer in China with an unmodified Google Chrome browser installed. By deploying strategies identified by Geneva, the user was able to browse free of keyword censorship. The researchers also successfully evaded Internet censorship in India, which blocks forbidden URLs, and Kazakhstan, which was eavesdropping on certain social media sites at the time.
In all cases, Geneva successfully circumvented Internet censorship. Kevin Bock, a computer science Ph.D. and lead author of the paper, said:
“Currently, the evade-detect cycle requires extensive manual measurement, reverse engineering, and creativity to develop new means of censorship evasion.
“With this research, Geneva represents an important first step in automating censorship evasion.”
The researchers plan to release their data and code in the hopes that it will provide open access to information in countries where the Internet is restricted. The team acknowledges that there may be many reasons why individuals living under autocratic regimes might not want to or be able to install the tool on their computers.
However, they remain undeterred. The researchers are exploring the possibility of deploying Geneva on the computer supplying the blocked content (known as the server) rather than on the computer searching for blocked content (known as the client).
That would mean websites such as Wikipedia or the BBC could be available to anyone inside countries that currently block them, such as China and Iran, without requiring the users to configure anything on their computer. Levin said:
“If Geneva can be deployed on the server side and work as well as it does on the client side, then it could potentially open up communications for millions of people.
“That’s an amazing possibility, and it’s a direction we’re pursuing.”
Provided by: University of Maryland [Note: Materials may be edited for content and length.]
Follow us on Twitter, Facebook, or Pinterest