New research lends credence to an unorthodox retelling of the story of early Earth that a geophysicist first proposed at the Scripps Institution of Oceanography in La Jolla, California, regarding Earth’s mantle.
In a study appearing in the journal Earth and Planetary Science Letters, researchers Dave Stegman, Leah Ziegler, and Nicolas Blanc provide new estimates of the thermodynamics of magnetic field generation in the liquid portion of early Earth’s mantle and show how long that field was available.
The National Science Foundation-funded research provides a “door-opening opportunity” to resolve inconsistencies in the narrative of the planet’s early days. Stegman said:
“Currently we have no grand unifying theory for how Earth evolved thermally.
“We don’t have a conceptual framework for understanding the planet’s evolution. This is one viable hypothesis.”
The study is one of the latest developments in a paradigm shift that could change how Earth’s history is understood. It has been a bedrock tenet of geophysics that Earth’s liquid outer core has always been the source of the dynamo that generates its magnetic field. Magnetic fields form on Earth, and other planets with liquid metallic cores rotate rapidly, and experience conditions that make heat convection possible.
Earth’s mantle was not always solid
In 2007, researchers in France proposed a radical departure from the long-held assumption that Earth’s mantle has remained entirely solid since the very beginnings of the planet. They argued that during the first half of the planet’s 4.5-billion-year history, the bottom third of Earth’s mantle would have been molten, which they call “the basal magma ocean.”
Six years later, Stegman and Ziegler expanded on that idea, publishing the first work showing how this once-liquid portion of the lower mantle, rather than the core, could have exceeded the thresholds needed to create Earth’s magnetic field during that time. This study is the next step in their work.
Provided by: National Science Foundation [Note: Materials may be edited for content and length.]
Follow us on Twitter, Facebook, or Pinterest