A ‘Gentle Touch’ Molecule Is Essential for Light Tactile Sensation in Humans

Gently touching lavender plants.
You were probably taught that you have five senses: sight, sound, smell, taste, and touch. This is not quite right: 'Touch' is not a single sense but several working together. (Image: MireXa via Pixabay)

You were probably taught that you have five senses: sight, sound, smell, taste, and touch. This is not quite right: “Touch” is not a single sense, but rather several working together.

Your body contains a network of sensory nerve cells with endings sitting in the skin that detect an array of different physical signals from your environment. The pleasant sensation of a gentle touch feels distinct from the light pressure of your clothes or the hardness of a pencil gripped between your fingers, and all of these are very different from the pain of a stubbed toe.

How do these sensory neurons communicate such a wide range of different inputs?

In new research published in Science, the two co-authors of this article and our colleagues have found a force-sensing molecule in nerve cells called ELKIN1. This molecule is specifically involved in detecting gentle touch. This molecule converts gentle touch into an electrical signal, the first step in the process of gentle touch perception.

How you sense gentle touch

Sensing gentle touch begins with tiny deformations of the skin caused by a light brush. While they may not seem like much, these deformations generate enough force to activate sensory molecules found in specialized nerve endings in the skin.

These molecular force sensors form a pore in the surface of the cell that is closed until a force is applied. When the cell is indented, the pore opens, and an electrical current flows.

This electrical current can generate a signal that moves along the sensory nerve to the spinal cord and up to the brain.

Our new research, led by Gary Lewin and Sampurna Chakrabarti from the Max Delbrück Center in Berlin, showed that the force sensor ELKIN1 is necessary to detect very gentle touch.

They found mice lacking the ELKIN1 molecule did not appear to sense a cotton bud being gently drawn across their paw. The mice retained their ability to sense other environmental information, including different types of touch.

Different molecules for different kinds of touch

This new finding reveals one reason you can sense multiple types of “touch”: You have multiple, specialized force-sensing proteins that can help you distinguish different environmental signals.

ELKIN1 is the second touch-receptor molecule discovered in sensory neurons. The first (PIEZO2) was founded in 2010 by Ardem Patapoutian, who was later awarded the Nobel Prize for the work. PIEZO2 is involved in sensing gentle touch and a sense known as “proprioception.” Proprioception is the sense of where your limbs are in space that helps you regulate your movements.

Mouse neurons with the new ion channel ELKIN1 (cyan), which is responsible for gentle touch sensation, nucleus (yellow), and the already known ion channel PIEZO2 (magenta).
Mouse neurons with the new ion channel ELKIN1 (cyan), which is responsible for touch sensation, nucleus (yellow), and the already known ion channel PIEZO2 (magenta). (Image: Sampurna Chakrabarti via Max Delbrück Center)

Identifying these force-sensing molecules is a challenge in itself. We need to be able to study nerve cells in isolation, measure electrical currents that flow into the cell, and simultaneously apply controlled forces to the cells themselves.

Do cells feel?

While much of our research studied mouse neurons, not all scientific data obtained from mice can be directly translated to humans.

With team members at the University of Wollongong, one of us (Mirella Dottori) tried to determine whether ELKIN1 worked the same way in humans. They reprogrammed human stem cells to produce specialized nerve cells that respond to “touch” stimuli. In these human cells, ELKIN1 had similar functional properties of detecting touch.

Microscope in a laboratory.
Experiments on sensory neurons confirmed the role of the ELKIN1 molecule. (Image: luchschenF via Shutterstock)

While this research expands our understanding of how we make sense of the world around us, it also raises an additional intriguing possibility.

ELKIN1 was first identified by one of us (Kate Poole) and her team at UNSW, with Gary Lewin and his team, while studying how melanoma cells break away from model tumors and “feel” their way through their surroundings. This could mean these tiny molecular force sensors give not only us, but our individual cells, a nuanced sense of touch.

Future research will continue to search for more molecular force sensors and endeavor to understand how they help our cells, and us, navigate our physical environment.

Kate Poole, Associate Professor in Physiology, UNSW Sydney and Mirella Dottori, Professor, University of Wollongong

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Follow us on XFacebook, or Pinterest

  • Troy Oakes

    Troy was born and raised in Australia and has always wanted to know why and how things work, which led him to his love for science. He is a professional photographer and enjoys taking pictures of Australia's beautiful landscapes. He is also a professional storm chaser where he currently lives in Hervey Bay, Australia.

RECOMMENDATIONS FOR YOU